domingo, 29 de mayo de 2016

Clasificación de ángulos según su medida

Agudo < 90°

ángulo agudo

Recto = 90°

ángulo recto

Obtuso > 90°

ángulo obtuso

Convexo < 180°

ángulo obtuso

Llano = 180°

ángulo llano

Cóncavo > 180°

ángulo cóncavo

Nulo = 0º

ángulo nulo

Completo = 360°

ángulo Completo

Negativo < 0º

ángulo negativo

Mayor de 360°

ángulo mayor de 360º

2 Tipos de ángulos según su posición

2.1.Ángulos consecutivos
Ángulos consecutivos son aquellos que tienen el vértice y un lado común.
Ángulos consecutivos
2.2.Ángulos adyacentes
Ángulos adyacentes son aquellos que tienen el vértice y un lado común, y los otros lados situados uno en prolongación del otro. Forman un ángulo llano.
Ángulos adyacentes
2.3. Ángulos opuestos por el vértice:
Son los que teniendo el vértice común, los lados de uno son prolongación de los lados del otro.
Ángulos opuestos por el vértice 
Los ángulos 1 y 3 son iguales.
Los ángulos 2 y 4 son iguales.

3 Clases de ángulos según su suma

3.1.Ángulos complementarios:
Dos ángulos son complementarios si suman 90°.
Ángulos complementarios
3.2. Ángulos suplementarios
Dos ángulos son suplementarios si suman 180°.
Ángulos suplementarios

4 Ángulos entre paralelas y una recta transversal

4.1. Ángulos correspondientes
Los ángulos 1 y 2 son iguales.
Ángulos correspondientes
4.2. Ángulos alternos internos
Los ángulos 2 y 3 son iguales.
Ángulos alternos internos
4.3. Ángulos alternos externos
Los ángulos 1 y 4 son iguales.
Ángulos alternos externos

5 Ángulos en la circunferencia

5.1. Ángulo central
El ángulo central tiene su vértice en el centro de la circunferencia y sus lados son dos radios.
La medida de un arco es la de su ángulo central correspondiente.>
dibujo
      expresión
5.2. Ángulo inscrito
El ángulo inscrito tiene su vértice está en la circunferencia y sus lados son secantes a ella.
Mide la mitad del arco que abarca.
dibujo
     expresión
5.3. Ángulo semiinscrito
El vértice de ángulo semiinscrito está en la circunferencia, un lado secante y el otro tangente a ella.
Mide la mitad del arco que abarca.
dibujo
     expresión
5.4. Ángulo interior
Su vértice es interior a la circunferencia y sus lados secantes a ella.
Mide la mitad de la suma de las medidas de los arcos que abarcan sus lados y las prolongaciones de sus lados.
dibujo
     expresión
5.5. Ángulo exterior
Su vértice es un punto exterior a la circunferencia y los lados de sus ángulos son: o secantes a ella, o uno tangente y otro secante, o tangentes a ella.
dibujo dibujodibujo
Mide la mitad de la diferencia entre las medidas de los arcos que abarcan sus lados sobre la circunferencia.
     expresión

6 Ángulos de un polígono regular

Ángulos de un polígono regular
6.1. Ángulo central de un polígono regular
Es el formado por dos radios consecutivos.
Ejemplo:
Si n es el número de lados de un polígono:
Ángulo central = 360° : n
Ángulo central del pentágono regular= 360° : 5 = 72º
6.2. Ángulo interior de un polígono regular
Es el formado por dos lados consecutivos.
Ángulo interior = 180° − Ángulo central
Ángulo interior del pentágono regular = 180° − 72º = 108º
6.3. Ángulo exterior de un polígono regular
Es el formado por un lado y la prolongación de un lado consecutivo.
Los ángulos exteriores e interiores son suplementarios, es decir, que suman 180º.
Ángulo exterior = Ángulo central
Ángulo exterior del pentágono regular = 72º

No hay comentarios:

Publicar un comentario